616 research outputs found

    On the contact conditions for the charge profile in the theory of the electrical double layer for nonsymmetrical electrolytes

    Full text link
    The contact value of the charge profile for nonsymmetrical electrolytes is presented as the sum of three contributions. One of them is the normal component of the Maxwell electrostatic stress tensor. The second one is the surface electrostatic property defined as the integral of the product of the gradient of the electrical potential and the density distribution function of coions. The third term is the bulk contribution defined by the sum for anions and for cations of the product of their charge and their partial pressure. For noncharged surfaces only the last two are present and have the same sign in the case of size asymmetry. In the case of charge asymmetry the contact value of the charge profile is the result of the competitions of bulk and surface terms in which the bulk term is dominant. Using both the contact theorems for the density and the charge profiles, the exact expressions for the contact values of the profiles of coions and counterions are obtained and some related properties are discussed.Comment: 5 page

    Spontaneous polarisation of the neutral interface for valence asymmetric coulombic systems

    Full text link
    In this paper, we discuss the phenomenon of a spontaneous polarisation of a neutral hard planar interface for valence asymmetric coulombic systems. Within a field theoretical description, we account for the existence of non trivial charge density and electric potential profiles. The analysis of the phenomenon shows that the effect is related to combinatorics in relation with the existence of the two independent species cations and anions. This simple and basic feature is related to the quantum mechanical properties of the system. The theoretical results are compared with numerical simulations data and are shown to be in very good agreement, which a fortiori justifies our physical interpretation.Comment: 12 pages, 11 figure

    Equilibrium properties of the lattice system with SALR interaction potential on a square lattice: quasi-chemical approximation versus Monte Carlo simulation

    Full text link
    The lattice system with competing interactions that models biological objects (colloids, ensembles of protein molecules, etc.) is considered. This system is the lattice fluid on a square lattice with attractive interaction between nearest neighbours and repulsive interaction between next-next-nearest neighbours. The geometric order parameter is introduced for describing the ordered phases in this system. The critical value of the order parameter is estimated and the phase diagram of the system is constructed. The simple quasi-chemical approximation (QChA) is proposed for the system under consideration. The data of Monte Carlo simulation of equilibrium properties of the model are compared with the results of QChA. It is shown that QChA provides reasonable semiquantitative results for the systems studied and can be used as the basis for next order approximations.Comment: 10 pages, 8 figure

    The effect of short-range interaction and correlations on the charge and electric field distribution in a model solid electrolyte

    Full text link
    A simple lattice model of a solid electrolyte presented as a xy-slab geometry system of mobile cations on a background of energetic landscape of the host system and a compensating field of uniformly distributed anions is studied. The system is confined in the z-direction between two oppositely charged walls, which are in parallel to xy-plane. Besides the long-range Coulomb interactions appearing in the system, the short-range attractive potential between cations is considered in our study. We propose the mean field description of this model and extend it by taking into account correlation effects at short distances. Using the free energy minimization at each of z-coordinates, the corresponding set of non-linear equations for the chemical potential is derived. The set of equations was solved numerically with respect to the charge density distribution in order to calculate the cations distribution profile and the electrostatic potential in the system along z-direction under different conditions. An asymmetry of charge distribution profile with respect to the midplane of the system is observed. The effects of the short-range interactions and pair correlations on the charge and electric field distributions are demonstrated

    New mean field theories for the liquid-vapor transition of charged hard spheres

    Full text link
    The phase behavior of the primitive model of electrolytes is studied in the framework of various mean field approximations obtained recently by means of methods pertaining to statistical field theory (CAILLOL, J.-M., 2004, \textit{J. Stat. Phys.}, \textbf{115}, 1461). The role of the regularization of the Coulomb potential at short distances is discussed in details and the link with more traditional approximations of the theory of liquids is discussed. The values computed for the critical temperatures, chemical potentials, and densities are compared with available Monte Carlo data and other theoretical predictions.Comment: 17 pages, 4 figures, 3 table

    Nematic fluid at a hard wall in the mean field approximation

    Full text link
    In the framework of a field theoretical approach we study Maier-Saupe nematogenic fluid in contact with a hard wall. The pair interaction potential of the considered model consists of an isotropic and an anisotropic Yukawa terms. In the mean field approximation the contact theorem is proved. For the case of the nematic director being oriented perpendicular to the wall, analytical expressions for the density and order parameter profiles are obtained. It is shown that in a certain thermodynamic region the nematic fluid near the interface can be more diluted and less orientationally ordered than in the bulk region.Comment: 6 pages, 1 figur

    A formally exact field theory for classical systems at equilibrium

    Full text link
    We propose a formally exact statistical field theory for describing classical fluids with ingredients similar to those introduced in quantum field theory. We consider the following essential and related problems : i) how to find the correct field functional (Hamiltonian) which determines the partition function, ii) how to introduce in a field theory the equivalent of the indiscernibility of particles, iii) how to test the validity of this approach. We can use a simple Hamiltonian in which a local functional transposes, in terms of fields, the equivalent of the indiscernibility of particles. The diagrammatic expansion and the renormalization of this term is presented. This corresponds to a non standard problem in Feynman expansion and requires a careful investigation. Then a non-local term associated with an interaction pair potential is introduced in the Hamiltonian. It has been shown that there exists a mapping between this approach and the standard statistical mechanics given in terms of Mayer function expansion. We show on three properties (the chemical potential, the so-called contact theorem and the interfacial properties) that in the field theory the correlations are shifted on non usual quantities. Some perspectives of the theory are given.Comment: 20 pages, 8 figure
    corecore